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Exploring Emergence with Substance-Free Categories

JaMI1IE DoucGLras
INDEPENDENT RESEARCHER

ABsTRACT This essay adopts a substance-free differentiation tree model of syntactic
categories where each category is defined by its differentiation code. The differenti-
ation code of a category is a binary code reflecting the developmental sequence of
splits from a single, ancestor category, with the length of the code being equal to
the amount of information borne (measured in bits). Labelling of merged categories
is achieved through a simple, additive evaluation algorithm, which evaluates two
input differentiation codes term by term and outputs a differentiation code (the
label).

The essay then explores some abstract, emergent properties of this system based on
how the amount of information in the labels rises and falls in a syntactic structure,
as well as exploring what happens if we assume the mapping between merge
sequences and label sequences must be bi-unique. Rather than attempting to derive
existing theoretical concepts or natural language phenomena, the aim is to show
that simple, substance-free models are interesting and fruitful bottom-up ways of
exploring emergent phenomena, some of which may or may not be reminiscent of
existing ideas.

1 INTRODUCTION

‘Emergentist’ approaches study the way that phenomena (often highly complex and
hard to intuit) arise from the interactions of simpler rules within a system, and they
have become increasingly popular in a range of fields in both the natural and social
sciences, including linguistics. One way to study emergence is ‘bottom-up’, that is
building models or formalised systems of rules and states that represent aspects
of interest, and seeing what sorts of behaviours arise. These models may vary in
complexity depending on their purpose, from the highly complex models used to
simulate the climate or epidemics, to very simple models, such as the Prisoners’
Dilemma (see Axelrod 1997). While very simple models may not be particularly
realistic, they may nevertheless be useful in exploring difficult problems. As Axelrod
(1997: 6) says:

... Models that aim to explore fundamental processes should be judged
by their fruitfulness, not by their accuracy. For this purpose, realistic
representation of many details is unnecessary and even counterproduc-
tive ... The primary aim is to undertake the exploration in a manner so
general that many possible settings could be illuminated.
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Exploring Emergence with Substance-Free Categories

In this essay, I will explore some of what emerges from a simple model of cate-
gories and labelling.

2 DIFFERENTIATION TREES AND DIFFERENTIATION CODES

One of the benefits of very simple and abstract models is that they can be applied to
many possible settings, and hence tend to be substance-free (see also Boeckx 2015).
The model I adopt below is in fact taken from the field of embryology, but is in the
abstract applicable to syntax.

In certain fundamental respects, some of the problems posed by embryologists
and syntacticians are very similar. An embryo does not contain the different cell
types found in a mature organism - it is not a homunculus - yet all these cell types
arise reliably through cell division and differentiation at the right time and in the
right place for each individual within any given species, presumably in response to
conditions in the external (chemical) environmental of the embryo. Similarly for
syntacticians, there is a growing consensus that infants are not born with grammars
containing all the different categories found in an adult grammar, yet somehow
all these categories arise reliably through category differentiation during language
acquisition for each individual within any given linguistic community, presumably
in response to statistical cues in the external environment of the learner. Indeed,
the importance of differentiation as a ‘biolinguistic’ process goes back at least as far
as Lenneberg (1967).

While even the basic details of the differentiation process (such as the conditions
under which it occurs, and how it proceeds) are difficult and active research questions
in both embryology and linguistics (and in a range of other fields facing formally
similar problems), I will simply assume that differentiation exists. At an abstract
level, we can model the differentiation of cells or syntactic categories using a
differentiation tree (Bjorklund & Gordon 1994, Gordon 2016).

A differentiation tree is effectively a family tree (see Figure 1). At the top (the
root) is the original ‘ancestor’ category (A). This splits (or differentiates) into two
‘descendant’ categories (B and C), which may themselves split into further categories
(D and E, and F and G, respectively), and so on. In developmental terms, this could
be that grammars initially contain a single category (A), and on the basis of some
statistical cue or contrast detected in the external linguistic environment, category
A differentiates into subcategories B and C, and so on.! Whatever the substance of
these categories is, each differentiation represents a contrast; for example, B and C
are both subcategories of A, but B and C contrast with one another.

Arranging categories hierarchically in this way is not a new idea (for example,
feature geometries in phonology, morphology and syntax, and inheritance hier-
archies in computational linguistics); nor is the idea that such hierarchies reflect
the development or emergence of categories during acquisition (see Hurford 2012:
Section 4.4 for an overview). However, if each split is represented in binary terms,

It could be that the first contrast detected is between ‘linguistic things’ and ‘non-linguistic things’,
but as this does not matter for the purposes of this essay, I will not pursue this question of category
substance further.
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Figure 1 Differentiation tree.
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Figure 2 Differentiation tree with differentiation codes.

i.e. one branch is designated [1] and the other [0], then every node or category can
be represented uniquely as a binary sequence - its differentiation code (Bjorklund
& Gordon 1994, Gordon 2016). The differentiation code of a category, read left-to-
right, thus reflects its developmental pathway from the original ancestor category,
which in this example is A with the differentiation code [1] (see Figure 2, where for
illustration every left-branch is [1] and every right-branch is [0]).

The differentiation codes encode the sequence of differentiations or contrasts that
lead to each category, and hence the formal relationships between categories. It also
captures the amount of information (measured in bits) that each category contains.
The longer the code, the more information it contains and the more specific the
category is, for example, category N [1010] contains 4 bits of information and so
is more specific than category C [10], which contains 2 bits of information. I will
return to this in section 4, after the introduction of an evaluation algorithm used for
labelling in the next section.
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3 THE EVALUATION ALGORITHM

When two categories are merged, what is the resulting category or label? Or in
other words, what information is projected, if any? As Hurford (2012: Section
4.4.5) notes, many different theoretical frameworks have converged on the idea that
the information in the label is endocentric, i.e. the information in the label comes
exclusively from information in the constituent categories of the structure being
labelled.? As such, I will pursue the intuition that, when two categories are merged,
they effectively contribute as much of their information as they can to the label, i.e.
labelling is maximally endocentric.

I propose an evaluation algorithm, which is an additive procedure that takes two
input differentiation codes and outputs a differentiation code (the label). Opera-
tionally, the algorithm compares the first (leftmost) term of the two input differen-
tiation codes. If the values are inconsistent, the algorithm stops; if the values are
consistent, that value becomes the value of the first term of the output differen-
tiation code. If all terms of both input differentiation codes have been evaluated,
the algorithm stops. Otherwise, it moves on to compare the next term of the input
differentiation codes, and so on.

Before going through some examples, note that there are three possible relation-
ships that two categories can have with one another based on their relative positions
in a differentiation tree. I will call these relationships ‘match’, ‘ancestor-descendant’
and ‘cousins’. The application of the evaluation algorithm has a different outcome
in each case, as illustrated below.

In ‘match’ relationships, the two categories are identical. In this case, the output
differentiation code will be the same as the input differentiation codes. An example
is given in (1):

(1) Merge [101] and [101]

a. Evaluate the first terms (i.e. 1 and 1). The values are consistent, so 1
becomes the value of the first term of the output differentiation code, and
we move on to the second term.

b. Evaluate the second terms (i.e. 0 and 0). The values are consistent, so 0
becomes the value of the second term of the output differentiation code,
and we move on to the third term.

c. Evaluate the third terms (i.e. 1 and 1). The values are consistent, so 1
becomes the value of the third term of the output differentiation code.
There are no more terms to evaluate so the algorithm stops. The output
differentiation code is [101].

Summary: Evaluate([101],[101]) — [101]

In ‘ancestor-descendant’ relationships, one category is a descendant of the other
(or conversely, one category is the ancestor of the other). This means the two input

2 In the Chomskyan tradition, the term ‘endocentric’ is essentially synonymous with ‘head-centric’.
However, it is a non-trivial problem to identify or define the ‘head’ of a phrase, and I will not complicate
the system being developed here by adding such a concept.
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differentiation codes will be of different lengths, and at some point the evaluation
algorithm will be evaluating a value (1 or 0) and nothing (denoted as @), for example,
evaluating [1] and [101] is equivalent to evaluating [10@] and [101]. Since @ means
the absence of a contrast, @ is effectively consistent with either 1 or 0. Therefore, in
the same way that positive + zero = positive, and negative + zero = negative, I will
assume that, when @ is evaluated against 1 or 0, the more specific value (i.e. 1 or 0)
becomes the output value. In other words, the evaluation in these cases is additive.
An example is given in (2):

(2) Merge [1] and [101]

a. Evaluate the first terms (i.e. 1 and 1). The values are consistent, so 1
becomes the value of the first term of the output differentiation code, and
we move on to the second term.

b. The input differentiation code [1] has no second term, but the input differ-
entiation code [101] does. This means we are effectively evaluating @ and
0. These are consistent in the sense defined above, and the more specific
value (in this case, 0) becomes the value of the second term of the output
differentiation code, and we move on to the third term.

c. 'The input differentiation code [1] has no third term, but the input differ-
entiation code [101] does. This means we are effectively evaluating @ and
1. These are consistent in the sense defined above, and the more specific
value (in this case, 1) becomes the value of the third term of the output
differentiation code. There are no more terms to evaluate so the algorithm
stops. The output differentiation code is [101].

Summary: Evaluate([1],[101]) — [101]

Finally, in ‘cousins’ relationships, the categories are neither identical, nor in
an ‘ancestor-descendant’ relationship; instead, they belong to different category
lineages of the differentiation tree. However, they do still share at least one common
ancestor category. In this case, the output differentiation code will be the same as
the last (i.e. most specific) common ancestor category, as shown in (3):

(3) Merge [101] and [11]

a. Evaluate the first terms (i.e. 1 and 1). The values are consistent, so 1
becomes the value of the first term of the output differentiation code, and
we move on to the second term.

b. Evaluate the second terms (i.e. 0 and 1). The values are inconsistent, so
the algorithm stops. The output differentiation code is [1].
Summary: Evaluate([101],[11]) — [1]

As can be seen, the output differentiation codes in all scenarios are maximally
endocentric, with each of the two input differentiation codes contributing as much
as they can to the output differentiation code (within the bounds of consistency).
While the ‘match’ and ‘ancestor-descendant’ scenarios yield output differentiation
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codes that are equivalent to at least one of the input differentiation codes (giving
the appearance of being ‘head-centric’), the ‘cousins’ scenario does not (and is not
possible under a ‘head-centric’ labelling approach) (see Figure 3). This will play an
important role in the discussion in the next section.

Match Ancestor-descendant Cousins
[101] [101] (1]
N RN N
[101] [101] [1] [101] [11] [101]

Figure 3 Examples of the three possible scenarios involving two merging categories, and
the resulting label.

4 INFORMATION DYNAMICS

In section 2, we saw how differentiation codes capture the amount of information in a
category, with the length of the differentiation code being equal to the number of bits
it contains. Combining this with the evaluation algorithm from the previous section,
we can view ‘match’, ‘ancestor-descendant’ and ‘cousins’ scenarios in terms of
increases, decreases or no change in information going from a constituent category
to the resulting label. Consider Figure 4, where 1" and ‘|’ indicate increases and
decreases in information, respectively, and ‘-’ indicates no change:

Match Ancestor-descendant Cousins
[101] [101] [1]
-\ AN VAN
[101] [101] [1] [101] [11] [101]

Figure 4 Information changes in the three possible labelling scenarios.

Under the ‘match’ scenario, the output label is as specific as each of the con-
stituent categories. I will describe this as there being no net change in information
relative to the constituent categories. Under the ‘ancestor-descendant’ scenario, the
output label is more specific than one of the constituent categories (the ancestor
category) and as specific as the other (the descendant category). I will describe this
as there being a net increase in information relative to the constituent categories.
Finally, under the ‘cousins’ scenario, the output label is less specific than either
of the constituent categories. I will describe this as there being a net decrease in
information relative to the constituent categories. The mechanics of the evaluation
algorithm rule out other logical possibilities, such as the output label being more
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[101] [101] [101]
-/\1 AN /N
[101]  [10] [10] [101] [1] [101]

-/\! -/\I -/\!

[10] [1] [101]  [1] [101]  [10]

Figure 5 Net increase in information in merge sequences of distinct categories from the
same category lineage.

specific than either of the constituent categories, or the output label being as specific
as one of the constituent categories and less specific than the other.

If we have a sequence of distinct categories from the same category lineage (i.e.
for any two categories chosen from the sequence, they will be in an ‘ancestor-
descendant’ relationship), then no matter the sequence in which these categories
are merged, the output labels will exhibit a net increase in information relative to
their constituent categories at each step. For example, if we have three distinct
categories from the same category lineage, such as [1], [10] and [101], there are three
possible merge sequences, assuming merge between two categories is unordered,
ie. {[10],[1]} = {[1].[10]}. As can be seen in Figure 5, there is a net increase in
information relative to the constituent categories at each step, regardless of the
particular merge sequence.

In the current system, situations where all the distinct categories being merged
come from the same category lineage, which are reminiscent of extended projections
(Grimshaw 1997) or domains of functional sequences in syntactic cartography (see
e.g. Cinque 1999), are defined by monotone (net) increasing information in the labels.

No matter how extensive a sequence of categories from the same category lineage
is, as soon as a ‘cousin’ category is merged, there is a net decrease in information
relative to both of the constituent categories, with the output label being the last
common ancestor category. This means that as the syntactic structure switches
between sequences of distinct category lineages, there is a collapse in the amount
of information in the label. This is illustrated in Figure 6.

The build-up of information when categories of the same category lineage are
merged and the collapse of information when categories of different category lin-
eages are merged, yields information periods or cycles, a bit like a syntactic pulse.
I will refer to these structures, which emerge as a result of the way information

While extended projections or functional sequences are typically considered to have strict sequences,
I have not imposed this as a requirement on the formal system being developed here for simplicity.
Even if sequences are strict, it need not automatically follow from a property of the formal system. For
example, strict sequences could reflect the order of acquisition of categories, or could arise through
some evolutionary dynamic preference for strict, or near-strict, merge sequences (see section 5).
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[1]

l)///\\\\i

[101] [1111]

AN

[1111]  [111]

AN
[111] [11]

Figure 6 Decrease in information when categories from distinct category lineages are
merged.

builds and collapses as categories from the same or different category lineages are
merged, as syntactic periods, as schematically illustrated in Figure 7. If we suppose
interfacing systems are sensitive to changes in information in the formal syntactic
structure, these syntactic periods are somewhat reminiscent of phases (Chomsky
2000), with edges marked by collapses in information at the end of sequences of
categories from the same category lineage.*

Furthermore, in the current system, these syntactic periods are inherently dy-
namic. Periodicity is not a property of any particular category or class of categories;
instead, a syntactic period ends as soon as a ‘cousin’ category is merged, where
‘cousin’ is by definition a relative term (as discussed in section 3). In this way,
syntactic periods may vary in size, and (almost) any category may in principle serve
as the syntactic period boundary, i.e. the last category merged in a sequence of
categories from the same category lineage.” This is illustrated in Figure 8, and is
reminiscent of dynamic phases (Boskovic 2014).

In Figure 8, [101] is the ‘cousin’ category triggering information collapse at
different stages, resulting in periods of different sizes. Incidentally, the current
system is insensitive to whether this ‘cousin’ category is an input category or an
output category, and whether it is externally or internally merged, suggesting a
variety of configurations where information collapses could be found.

Furthermore, according to the current system, the transition from one syntactic
period to another is a two-step process. The first step is the merger of a ‘cousin’

I'say ‘reminiscent’ because I am not trying to derive Chomskyan phases. If periods are phases, they are
quite different from Chomskyan phases in key ways, for example, periods are based on information
theoretic dynamics among categories (rather than an appeal to computational efficiency); they are
emergent (rather than a primitive of the theory or posited on the basis of any empirical effects); they
are dynamic and make no reference to phase heads or phase edges (rather than being properties
inherent to particular phase heads).

The only systematic exception is the original ancestor category, which can never serve as the period
boundary, because it has no ‘cousin’ categories.
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Derivational step

Figure 7 Schematic illustration of periodic increases and decreases in information or

specificity.
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Figure 8 Syntactic periods vary in size depending on when a ‘cousin’ category is merged.
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Figure 9 Two-step process to transition from one syntactic period to another.

category. This triggers the information collapse that signals the end of a syntactic
period. However, this is not sufficient to establish a new syntactic period. The
second step is therefore the merger of a category from a new category lineage. This
is illustrated in Figure 9, but note that the category in the first and second steps
need not be the same according to the logic of the system.

Another situation that could arise in the current system is a sequence of infor-
mation collapses. These would arise when a ‘cousin’ category is merged, triggering
collapse to the last common ancestor category, followed by merger of a category
that is a ‘cousin’ category of that last common ancestor, triggering collapse to an
even more distant last common ancestor. The limit of how long such a sequence
of information collapses could continue would depend on the number of ‘cousin’
categories available to the output category at each stage. Figure 10 illustrates two
consecutive steps of information collapse — [110] and [1111] are ‘cousin’ categories,
triggering collapse to [11]; and [11] and [101] are ‘cousin’ categories, triggering a
further collapse to [1].

Whether the interface subsystems are sensitive to differences between single
points of information collapse and sequences of information collapses is an in-
triguing possibility to explore, for example, if this aspect were built into the model,
would we see phenomena emerge that are reminiscent of conditions on extraction,
or effects where the degree of category relatedness between a moving element and
the structure it is being extracted from have an impact on accessibility. I will not
pursue such questions here, but note that the current approach to categories and
labelling offers a fruitful way to explore what sorts of interactions might emerge
from the system.
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Figure 10 Sequence of information collapses.

5 MAPPING BETWEEN MERGE SEQUENCES AND LABEL SEQUENCES

As noted in the previous section, the current system places no order on the merger
of categories; categories are free to merge in any order, i.e. all merge sequences
are possible. However, in a system with labelling, merge sequences map to label
sequences and vice versa, which opens the possibility that constraints on the mapping
may constrain the types of sequence that might come to predominate in the system
due to evolutionary dynamics or natural selection.

Specifically, in this section, I explore how many merge sequences satisfy a bi-
unique mapping, i.e. a one-to-one mapping between merge sequences and label
sequences, and some of the behaviours they exhibit. While bi-unique mappings in-
troduce a high degree of redundancy between merge sequences and label sequences,
they also make information transfer more resilient in the face of random errors or
noise, so I think this serves as a reasonable first avenue to explore.® In what follows,
I will also limit the discussion to merge sequences involving categories from the
same category lineage, and will assume throughout that elements are merged once
and only once.

If we have n distinct categories from the same category lineage, and if (as above)
merge is unordered, i.e. Merge(a,b) = Merge(b,a), the number of possible merge
sequences for those n categories, M, is given as:

For example, if we have four distinct categories from the same category lineage,
such as [10], [101], [1011] and [10110], which I will call D), @), @ and (@) respectively

This is analogous to the bi-unique mapping between nucleotide base pairs in DNA, which increases
resilience against random errors when replicating genetic information.
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to reflect their relative specificity,” we have 12 (= 4!/2) possible merge sequences.
These are listed below:

{{{oojere {({(0e1e1e) {({{od@0) 6}
5 HOorarer ({{0016}e) {{2®}6)d}
{{oerorar {{oe1o1dr {{(®er0) e}
{{oerarer {{o61d1or {({{(®6ro0)

Given the evaluation algorithm from section 3, each merge sequence maps onto a
label sequence. The label sequences corresponding to the merge sequences in (5) are
given below. Note that, while there are twelve possible merge sequences, there are
only five distinct label sequences. In other words, while any single merge sequence
maps onto a single label sequence, multiple merge sequences may map onto the
same label sequence.

@00 G006 GO
200 000 G0
GBR® GB® GO
GO’ BB GO

If we have n distinct categories from the same category lineage, then the number
of terms in the label sequences will be n—1 because there are n—1 branching nodes.
It is possible to calculate the number of distinct label sequences for n categories,
L, using the following formula (see Appendix A for how this is derived):

For example, when n = 4, L,, = 5, i.e. there are five distinct label sequences, as
shown above (namely @3 ®, @@ ®, 3 ®, ®®® and ®@ D).

As mentioned above, label sequences may map back onto several different merge
sequences. However, there will always be some label sequences which map back
onto a single merge sequence, i.e. there is a bi-unique mapping between the merge
sequence and the label sequence. I will refer to such label sequences as unique label
sequences. For example, of the five distinct label sequences shown above, two are
unique label sequences (namely, @3 @ and @@ @). In the general case, if we have
n distinct categories from the same category lineage, then the number of unique

Note that @), @), 3), etc. could stand for the members of any chosen group of categories from the
same category lineage. The important point here is that (D) stands for the least specific category among
the group, (@ for the second least specific category among the group, 3 for the third least specific
category among the group, and so on.
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Figure 11 Strict monotone increasing and near-strict monotone increasing unique label
sequences.

label sequences for n categories, U, is given by (see Appendix B for how this is
derived):®

®) U,=2"3

The set of unique label sequences always contains the label sequence that is strict
monotone increasing, i.e. every term of the label sequence is more specific than
the previous term. However, when n > 3, there are other possibilities. In these
cases, there are unique label sequences that are what I will call near-strict monotone
increasing. Consider the two unique label sequences @3@ and @@ @ from the
example above: the first is strict monotone increasing, but the second is not (since
there is no increase between the second and third terms). The difference lies in the
order in which (3) and (4) are merged relative to each other in the merge sequence,
which in turn results in a different label sequence (and potentially quite a different
interpretation at the interfaces). As shown in Figure 11, in the left-hand structure
corresponding to the strict monotone increasing label sequence @@ @, category 3
appears as the complement of (4 (to use conventional configurational terms), while
in the right-hand structure corresponding to the near-strict monotone increasing
label sequence @@ @), category (3) appears as the specifier or adjunct of (.

Such pairs of unique label sequences are systematic for merge sequences where
n > 3. To illustrate, I have listed the four unique label sequences when n = 5 and
the eight unique label sequences when n = 6, but will leave the reader to work
through such sequences if they wish to do so.

©) n=5U,=4

Since there cannot be non-integer numbers of label sequences, the exponent must be greater than
or equal to 0, i.e. n—3 > 0. Therefore, we could write: U,, = 2wheref(x) = max{n — 3,0}. This
would capture the case where n = 2 where there is only one possible label sequence and hence one
unique label sequence. For n = 1, unary Merge could apply and the labelling algorithm presented
here would yield one possible label sequence and hence one unique label sequence, assuming unary
Merge is essentially binary Merge where an element merges with nothing.
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a. @0A@G
b. @GOG
¢ O®O6
d @066

(10) n=6,U, =8

VO]
VOO,
@3®
BOOO0]
@DHBHO®
BIOOIOO]
@@®®
VOO,

ISEEN

& 0

5 @ o

As can be seen, the near-strict unique label sequences deviate from the strict
unique label sequence in a systematic way. The system developed here means there
are restrictions on which values a given term in a label sequence may have. The
value of the last term must be the most specific category, the value of the second
to last term may be either the most specific category or the second most specific
category, the value of the third to last term may be the most specific category, the
second most specific category or the third most specific category, and so on. For
near-strict unique label sequences, there is at least one pair of consecutive identical
values. Such pairs of values are only allowed to occur at the highest term for that
value, and the term immediately preceding it.

6 CONCLUSION

In this essay, I adopted a substance-free differentiation tree model of syntactic
categories, where each category is designated by its own unique differentiation
code. I proposed a simple, maximally endocentric evaluation algorithm that reads
the input differentiation codes and outputs a differentiation code (the label). I
then explored some of the information dynamics that emerge from such a system,
including findings that are potentially and intriguingly reminiscent of ideas in the
literature, such as extended projections and dynamic phases. Finally, I explored
some consequences of assuming the mapping between merge sequences and label
sequences is bi-unique, at least for structures involving categories from the same
category lineage.

Further questions may also be explored in this system, or the system may be
refined to model further aspects of interest. For example: what effects emerge if
some categories do not map onto natural classes, or are ignored by the system?
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What evolutionary dynamics might be at play in the survival of newly created and
existing categories? What other properties could emerge from bi-unique or other
types of mapping between merge sequences and label sequences? Given the highly
general system developed here, are there any other systems with (newly-exposed)
formal similarities that could shed light on syntactic problems?

The discussion and open questions highlight how rich and complex behaviours
may emerge from a simple, abstract and substance-free system under simple as-
sumptions. As such, although not aiming to derive natural language phenomena or
existing theoretical ideas, I take the model developed here to be both interesting
and fruitful in approaching certain fundamental questions in syntax and beyond.
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Exploring Emergence with Substance-Free Categories

A CALCULATING THE NUMBER OF DISTINCT LABEL SEQUENCES

The equation for calculating the number of distinct label sequences for n distinct
categories from the same category lineage is the equation for generating the Catalan
numbers, which is a sequence found in the solution to a range of problems in
combinatorics.’

A Lo = ity = 5 (00)

To show why this is the case, I will show that the problem of calculating the
number of distinct label sequences can be approached in one of the various ways
that has been used to prove this equation.

To start, if we have n distinct categories from the same category lineage (and
for simplicity, assuming that each category can be merged once and only once),
then the merge sequences will have n terms, and the corresponding label sequences
will have n—1 terms. In what follows, I will denote the number of terms in a label
sequence as t, where t = n—1.

The problem of calculating the number of distinct label sequences of length ¢ can
be modelled as finding the number of monotonic lattice paths along the edges of a
grid with t x t square cells from the bottom-left to the top-right which only consist
of upwards and rightwards moves, and where all moves are above the diagonal
line that bisects the grid (see Wikipedia: ‘Catalan number’). The reasons for these
conditions will be explained below.

End

@
e L
@

Start

Figure A1 Example of a 3 x 3 grid.

Figure Al illustrates with a 3 x 3 grid. Assuming we have four distinct categories
from the same category lineage, call them (), 2), 3 and @ reflecting their rela-
tive specificity (where (D) is the least specific category and (4 is the most specific
category), the terms of the corresponding label sequences will have three possible
values, namely @), 3) and @ (as the least specific category among those being
merged, (D would never be an output category and hence would not be a possible
value of the corresponding label sequences given the evaluation algorithm laid out

Note the equation is typically given as:
_ (2n) 1 2n
Cn = (n+1)In! = n+41 <n) forn 2 0.
Since a merge sequence with n categories will correspond to a label sequence with n—1 terms, I
substitute n—1 in place of n in (A1). Alternatively, the equation for L, is for n > 1, while the equation

for Cy, is forn > 0.
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above). The three possible values of the label sequence terms are given down the
side of the grid, while the bottom of the grid may be interpreted as the first, second
and third terms of the label sequence, going left to right.

As mentioned above, we are only interested in the paths which consist of upwards
and rightwards moves. The absence of downwards moves reflects the fact that,
when dealing with categories from the same category lineage, the values in a label
sequence will be either the same as or more specific than the previous value. The
absence of leftwards moves reflects the assumption that labels cannot be overwritten
at a later stage.

As also mentioned above, we are only interested in those paths that are entirely in
the part of the grid above the bisecting diagonal line. This reflects the constraints on
the values that the label sequence terms may take. Specifically, for label sequences
with three terms and possible values 2), 3) and (@), the first term may be 2), 3) or
@), the second term may be 3 or @), and the third term may only be (4. The value
@) is possible in the first term if (D) and @) are merged first; if (2) is merged with (3)
or @ first, the resulting label will be 3 or 3, and (2) could never be the value of
subsequent terms since it is less specific than 3) or 3. Furthermore, even if the first
term is (2), subsequent terms cannot be because the only remaining possibilities
would be to merge (2) with 3) or @, both which are more specific than 2), and

hence the next value will be 3) or @), and so on.

@ J\} A > | # A r—> ' >
@ J\\- M n
@ ,u,/ A A M Fy
@066 006 6606 606G 0Oe

Figure A2 ‘The five monotonic lattice paths along the edges of a 3 x 3 grid from bottom-
left to top-right which only consist of upwards and rightwards moves, and
where all moves are above the diagonal line.

k. 4
W

Figure A2 gives all possible paths that satisfy the conditions mentioned above,
and their corresponding label sequences. The leftmost path represents the label
sequence 3@, the path second from left represents the label sequence @@ @),
and so on. As expected, there are five possible paths, corresponding to the five
distinct label sequences for four distinct categories from the same category lineage.

The reason for showing that our problem can be represented in this way is that
this forms the first step of one of the many established proofs for the equation above.
In the rest of this section, I will briefly go through the key elements of the proof
(but for full details, see Wikipedia: ‘Catalan number’).

All of the paths in Figure A2 have an exceedance equal to 3, i.e. the number
of upward arrows above the diagonal in each of the paths above is 3. It can be
shown that the number of paths of exceedance 3 is equal to the number of paths
of exceedance 2, which is equal to the number of paths of exceedance 1, which
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is equal to the number of paths of exceedance 0. In fact, it can be shown in the
general case that, for a t X t grid, the number of paths of exceedance ¢ is equal
to the number of paths of exceedance t—1, -2, and so on, through to ¢ (i.e.
exceedance 0). Furthermore, it can also be shown that the total number of paths
combining all exceedances through a ¢t x ¢ grid, P, is equivalent to the central
binomial coefficient, i.e. the binomial coefficient that appears exactly in the middle
of the t! even-numbered row in Pascal’s triangle, conventionally denoted as:

42 P= (%)

Since there are ¢ 4 1 exceedance groups for any ¢ x ¢ grid, and since the number of
paths in each exceedance group is the same, the number of distinct label sequences
of length ¢ is the central binomial coefficient divided by the number of exceedance
groups:

_ 1 (2t
(A3) L= m(t)

Since t = n—1, we can substitute to express the number of distinct label sequences

in terms of n:

(A4) Ln _ %(2(71—1))

n—1

This is equivalent to:

_ (2(nr=D)!
(AS)  Ln = im=1y

B CALCULATING THE NUMBER OF UNIQUE LABEL SEQUENCES

The number of unique label sequences can be calculated by considering the possible
values of each term in the label sequence.

The final term in any label sequence (including unique label sequences) must be
the most specific value, since as soon as the most specific category is merged, that
will be the output category, and the very last opportunity to merge the most specific
category is at the end of the merge sequence.

The first term in a unique label sequence must be the least specific value, i.e. (2)
(not the least specific category, i.e. (D), since (I) can never be the label in a label
sequence where all categories are from the same category lineage). If the value of
the first term were anything more specific, there would be ambiguity about the
merge sequence: in the simplest case, suppose the first term of the label sequence
was (3). This would be ambiguous between the merge sequence {(D 3} and {@
3}, so all label sequences where the first term is anything other than 2) would
map onto at least two merge sequences, and therefore would not be unique.

For each of the remaining terms in unique label sequences, i.e. those that are
not the first or last terms, there are two possible values. For a label sequence of
length ¢, the second term may be either (3) or (@), the third term may be either (4 or
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(®), the fourth term may be either () or (6), and so on, through to term ¢-1. As in
Appendix A, this partly reflects the constraints on the values that the label sequence
terms may take. But it also reflects the constraint that, if the label sequence is to
be unique, values cannot occur too early in the label sequence depending on the
specificity.

For example, consider the label sequences Q@B G and @GOG ). The label
sequence Q@GO is unique. The first term is (2), so we know the merge sequence
starts with (D) ). The second term is (@), so we know the next category to have been
merged must have been (@ (if the next merged category had been 3), the second
term in the label sequence would have been (3); if the next merged category had
been (B), the second term in the label sequence would have been (5)). The third
term is (5), so we know the next category to have been merged must have been (3.
Finally, the fourth term is (3), and we know the final category to have been merged
was (3) because that is the only category left to account for.

Turning to label sequence @B G (D), this is not unique. From the first and second
terms, we know the merge sequence must start with {{D @} & }. However, as
subsequent terms of the label sequence are also (5), we cannot be sure whether
the merge sequence was {{{{D @} ®} @} @} or {{{{® @} ©} @} B@}. This
would be true where the difference between any two consecutive terms in a label
sequences is greater than 2 degrees of specificity. This constraint, combined with
the constraints on the values that terms in any label sequence may take, means that
for all unique label sequences, the first term and last term may each have only one
possible value, while all other terms may have two possible values. The number of
unique label sequences of length ¢, Uy, is thus:

(B1) U, =1.1.2t"2=2t"2

Since t = n—1, we can substitute to express the number of unique label sequences
in terms of n:

B2) U, =2"3
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